Логотип компании ТехноИнжСтрой, тип 3

+7 (495) 15 00 483 | inbox@tis-m.ru


Нейтрализация и очистка, концентрирование и переработка гальванических стоков

Гальваника. Очистка стоков.

Общая характеристика гальваностоков

гальваностоки

Гальваника в виде трех своих основных направлений (гальваностегия, производство печатных плат, гальванопластика) является главным поставщиком сточных вод, загрязненных ионами тяжелых металлов (никель, хром, медь, олово, цинк, кадмий, железо, свинец и пр.). Подобные сточные воды, кроме присутствия в них металлов, характеризуются:

  • сложным, комплексным солевым фоном;
  • наличием опасных анионов (фториды, цианиды).

Сточные воды гальванического цеха можно условно классифицировать по происхождению:

  • низкоконцентрированные растворы из проточных ванн промывки деталей;
  • среднеконцентрированные растворы из ванн улавливания (непроточных ванн промывки);
  • высококонцентрированные отработанные электролиты.

По составу они могут быть:

  • щелочные: от процессов обезжиривания изделий, аммиачного травления, цинкатного цинкования;
  • кислотные: от травления изделий, сернокислого меднения, никелирования, кислотного цинкования;
  • циансодержащие: от процессов цианистого меднения, цинкования, серебрения;
  • хромсодержащие: от процессов хромирования, пассивации, травления;
  • фторсодержащие: от процессов травления;
  • в некоторых процессах в состав электролитов в качестве буферной добавки входит борная кислота.

По классификации Всемирной организации здравоохранения сточные воды, загрязненные тяжелыми металлами, отнесены к наиболее опасной для живых организмов группе.

По шкале стресс-факторов они также занимают первое место (135) с большим отрывом опережая разливы нефти (75 баллов) и радиоактивные загрязнения (40 баллов).

К содержанию...

Технологии очистки гальванических стоков

Типовая блок-схема очистки гальваностоков

На «старых» заводах преобладает такой (устаревший) подход: все стоки, чаще всего включая хозфекальные и ливневые, объединяют, нейтрализуют известью и далее сливают в водоемы. Концентрации тяжелых металлов в стоках могут быть даже на уровне ПДК, но количество стоков таково, что суммарный сброс достигает огромных значений. Образующийся при «очистке» в огромных количествах известковый шлам вывозят на шламовые поля, где он подвергается воздействию атмосферных осадков и «фонит» тяжелыми металлами. Как следствие – 75% водоемов Европейкой части России в той или иной степени загрязнены тяжелыми металлами. «Методически правильным» способом очистки сточных вод является минимизация их количества. На новых заводах, построенных по современной технологии, это достигается применением многокаскадных промывных ванн и установок локальной очистки для каждого вида стока с возвратом очищенной воды и концентрата химреагентов в производство.

На старых заводах очистка различных групп сточных вод гальванического производства производится по схеме, изображенной на рис.1. Разумеется, хозфекальные и ливневые стоки необходимо отделять от производственных стоков и очищать отдельно.

К содержанию...

Очистка циансодержащих сточных вод гальванических производств

нейтрализация и очистка гальваностоков.

Для окисления цианидов обычно используют раствор гипохлорита натрия (NaClO). Цианиды окисляются гипохлоритом натрия частично до углекислого газа и воды, но в основном до малотоксичных цианатов (соли циановой кислоты НNCO). Последние в водных растворах гидролизуются с образованием гидрокарбонатов и аммиака, а также образуют малорастворимые соединения с ионами тяжелых металлов и выпадают в осадок. Циансодержащий сток необходимо подщелачивать, т.к. реакция окисления цианидов активным хлором протекает с наибольшей скоростью в щелочной среде ( рН от 10,5 до 12,0 ). Кроме того, подщелачивание циансодержащего сброса до рН = 11,0 предотвращает возможность образования летучего цианистого водорода. Для подщелачивания до средней величины рН = 11,0 можно использовать часть сброса со щелочных ванн с максимальной остаточной концентрацией щелочи либо товарный гидроксид натрия. Доза активного хлора составляет от 2,73 до 3,18 мг на 1 мг цианида. Гарантией полного окисления цианидов является наличие в обработанной воде 2,0-3,0 мг/л остаточного активного хлора. Обезвреженный сток поступает на общую переработку кислотно-щелочных стоков.

К содержанию...

Очистка хромсодержащих гальваностоков

Очистка гальваностоков.

Хромсодержащие гальванические стоки обрабатываются в две ступени:

  1. Восстановление шестивалентного хрома до трехвалентного.
  2. Осаждение трехвалентного хрома в виде гидроксида. Данная стадия выполняется в рамках очистки кислотно-щелочных стоков.

В качестве восстановителя обычно использую бисульфит натрия (NaHSO3). Скорость и полнота реакций восстановления CrVI до CrIII в большой мере зависят от величины рН реакционной смеси. Наибольшая скорость реакций восстановления достигается в кислой среде при рН 2,0-2,5. Учитывая, что средняя величина рН хромсодержащих СВ обычно несколько ниже этого значения, требуется подщелачивание. Для подщелачивания также можно использовать часть сброса с одной из щелочной ванн с максимальной остаточной концентрацией щелочи либо товарный гидроксид натрия. Значения необходимых доз бисульфита натрия в зависимости от концентраций CrVI и различных величин рН, определяются экспериментальным путем. Исходя из имеющейся практики восстановления CrVI до CrIII, необходимая доза бисульфита натрия (при концентрации CrVI до 10 мг/л и оптимальной величине рН 2,0-2,5) составляет 9,0-9,5 г NaHSO3 на 1 г CrVI. Обезвреженный сток поступает на общую переработку кислотно-щелочных стоков.

К содержанию...

Нейтрализация гальваностоков и их очистка от ионов тяжелых металлов

Очистка гальваностоков.

Смешение обезвреженных цианистых и хромовых стоков с кислотно-щелочными стоками приводит к их взаимной нейтрализации. Практика комбинированной переработки трех основных потоков (цианистых, хромовых и кислотно-щелочных) сточных вод гальванического производства показывает, что величина рН усредненного стока имеет чаще всего значение слабокислое или нейтральное, значительно реже слабощелочное. Реальная величина рН усредненного стока является переменной, в зависимости от количества и состава поступающих в емкость-накопитель стоков. В зависимости от видов ионов ТМ, очистку стоков выполняют путем подщелачивания раствора до конечной величины рН в пределах 6,5-9,0. Учитывая качественный состав ТМ, присутствующих в стоках, для глубокой очистки требуется повышение величины рН раствора до величины 9,0-10,0. Наиболее широко распространенным реагентом используемым для подщелачивания при очистке от ТМ, является раствор известкового молока. Практика очистки СВ от ТМ показывает, что при совместном осаждении двух или нескольких ионов ТМ при одном и том же значении рН достигаются лучшие результаты, чем при осаждении каждого из ионов металлов в отдельности. Это явление называется соосаждением ТМ. Для ускорения осветления нейтрализованных cтоков рекомендуется проводить процесс в трехкамерном горизонтальном осветлителе, в первую камеру которого дозируется известь, во вторую – коагулянт (FeSO4 или FeCl3), в третью – флокулянт. Скоагулированный сток поступает в отстойник с тонкослойными модулями, где происходит его осветление. Осветленная вода подается на фильтры, а шлам – на обезвоживание на фильтр-прессах. Для гарантированной очистки жидких отходов до ПДК добавляются операции сорбции на активированном угле, ультрафильтрации и обратного осмоса. Если же в стоках присутствует бор, то обратный осмос является единственным эффективным методом его удаления. Пермеат обратного осмоса соответствует 2 категории воды для гальванических производств по ГОСТ 9.314.90, что позволяет применять его как оборотную воду для процессов приготовления электролитов и каскадных промывок. Концентрат обратного осмоса может быть подвергнут выпариванию до сухих солей, чтобы предотвратить их попадание в окружающую среду (технология «нулевого сброса»).

К содержанию...

Принципиальные отличия современного и устаревшего технологических подходов к созданию систем очистки гальванических стоков

Очистка гальваностоков.

Существует 2 принципиально разных подхода к очистке гальванических стоков. Первый, традиционный и устаревший, заключается в том, чтобы слить все виды стоков, с разных процессов и стадий в одну большую емкость — «усреднитель» (который в действиетельности не усредняет) — и далее нейтрализовать и очистить получившуюся смесь (как правило «адскую» с точки зрения химии и сепарационно-очистительных технологий) до нормативный уровней, с тем, чтобы затем сбросить очищенный раствор в канализацию. Такой подход не только усложняет и удорожает очистку, но экономически крайне расточителен. На среднестатистическом гальваническом предприятии, работающем по технологиям и на оборудовании, оставшемся со времен Советского Союза, полезно используется около 30-40 % цветных металлов, 5-10% кислот и щелочей и только 2-3% воды. Также и многие вновь созданные гальванические производства не отличаются рациональностью в этом вопросе. Второй, современный, предлагает, во-первых, собирать стоки разного типа и обрабатывать их раздельно (потому что — это проще с химической и инженерной точек зрения, и, следовательно, дешевле, экономически эффективнее), во-вторых, проанализировать какие компоненты стоков могут быть рекуперированы и возвращены в технологические процессы (дорогостоящие соли тяжелых металлов, процессная вода, кислота, щелочь), что, помимо очевидных экономических выгод, делает производство также более дружественным экологически (сокращает или вовсе ликвидирует объемы жидких сбросов и их токсичность), и менее зависимым от наличия, доступности, стоимости мощностей внешних коммуникаций (что особенно важно в районах с ограниченной доступностью, например, водных ресурсов, что в свою очередь, не редкость уже и в средней полосе Росии в связи с агрессивной их эксплуатацией и ее наращиванием в последнее десятилетие). При рекуперации компонетов стока необходимость в очистных сооружениях общего стока может отпасть вовсе, или их размер и сложность (стоимость) сократиться в разы.

К содержанию...

Раздельный сбор и обработка стоков: почему это необходимо делать

Очистка гальваностоков.

Раздельный сбор стоков стоит очень недорого, при этом позволяет существенно улучшить и оптимизировать работу всей линии обработки стоков, и даже (в ряде случаев) решить ряд критических проблем эксплуатации (даже в случаях, когда раздельная обаботка и/или рекуперация не планируется!).

  1. Раздельный сбор позволяет добиться корректного усреднения стоков, без которого все остальные дорогостоящие стадии очистки подвержены сбоям, затрудняют эксплуатацию, часто выходят из строя фильтрующие элементы, повышается частота сервисно-восстановительных работ. Подробнее о системах корректного усреднения на основе раздельного сбора различных видов стока можно прочитать ниже.
  2. Некоторые виды стоков могут быть рекуперированы: т.е. те или иные вещества возвращены в тех.процесс. Это не только экономит деньги производства на закупку основных реагентов, но и уменьшает количество загрязнений в обрабатываемом стоке и, в ряде случаев, объем стока: сокращаются капитальные и эксплуатационные затраты на основную линию очистки, уменьшается количество твердых и жидких отходов, а значит расходы на их утилизацию, и производство становится более экологичным.
  3. Целый ряд стоков (например, хромовые и циано-стоки) требуют предварительной специальной обработки перед подачей на усреднение в силу высокой токсичности и своих химических особенностей.

К содержанию...

Корректное усреднение стоков

Очистка гальваностоков.

Усреднение стоков самая недорогая и, при этом, критическая стадия обработки гальванических стоков.В отсутствие корректного усреднения, состав раствора поступающего на осаждение нестабилен, соответственно, работа осаждения становится ненадежной, возникают проскоки, поступающие на последующие стадии обработки, — возникает «эффект домино».Коллеги из отрасли часто жалуются на некачественную работу, сбои, загрязнение поздних стадий обработки гальванического стока: фильтрации, обртаного осмоса, испарителей и т.д., в то время, как причина плохой работы всех этих систем во многих случаях кроется в некачественном усреднении и, как результат, нестабильности состава обрабатываемого раствора. Доминирующий в настоящий момент подход к усреднению: большая бочка, в которую сливаются все стоки, по мере их образования. Расчет объема такого усреднителя должен производится исходя из реальных режимов работы, и при качественном расчете объем его оказывается чрезвычайно велик в большинстве случаев. Но при росте объема резко растет стоимость (емкости, мешалок) и начинает сказываться дефицит свободного места для размещения большого резервуара. Поэтому в реальной практике все усреднители такой конструкции — недоразмерены и, как следствие, не усредняют сток качественно. Простой способ определить недоразмеренный усреднитель: если на Вашем производстве на нейтрализацию после усреднения подается то кислота, то щелочь, — значит усреднитель мал и не усредняет сток, иначе рН был бы стабилен и, следовательно, был бы либо кислым, либо щелочным (кислым, как правило), и необходимости в работе второго дозатора просто не было бы. Впрочем, даже если работает 1 дозатор — это не означает, что сток качественно усредняется (рН может колебаться, например в кислой зоне), но поочердная работа 2-х дозаторов однозначно свидетельствует о некорректном усреднении. Корректным подходом к усреднению является радельный сбор раздличных стоков с последующим смешением в заданной пропорции в малом усреднителе (который может срезу работать и как нейтрализатор). Стоимость такого решения крайне невелика (и заметно дешевле полноразмерного усреднителя первого типа в большинстве случаев) в сравнении оборудованием последующих стадий обработки. Дополнительными плюсами являются экономия реагентов на нейтрализацию и возможность произвести отдельную специальную обработку некоторых стоков, уменьшив размер общей линии очистки, и общее количество твердых и жидких отходов. В ряде случаев (хроматный и цианидные стоки, например) раздельная обработка — необходимость. В ряду случаев оправдан комбинированный подход: основные стоки, поступающие стабильно, направляются в емкостной усреднитель, а стоки периодического сброса собираются отдельно и подмешиваются в общий поток. Таким образом для каждого конкретного производства, исходя из режимов его рабты, необходимо корректно выбрать подход (объемное усреднение, смешением, или комбинированное) и рассчитать состав и размеры емкстного и насосного оборудования.

Качественная работа стадии усреднения решает 80% проблем на всех последующих стадиях обработки стока.

К содержанию...

Осаждение тяжелых металлов: варианты исполнения

Очистка гальваностоков. Флотатор.

Классический вариант исполнения осаждения тяжелых металлов (на дно емксти) не всегда хорошо работает по целому ряду причин. При этом существуют альтернативные инженерные подходы, позволяющие во многих случаях добиваться существенно лучших результатов.

Традиционно, на гальванических линиях тяжелые металлы из стока осаждают в так называемых осветлителях: это вариант технологии, в котором хлопья осадка должны успеть укрупниться на столько, чтобы под собственной тяжестью осесть на дно соответсвующей емкости (камеры емкости). На самом деле более корректным решением для гальваники является осаждение во флотационных установках по двум причинам:

  1. Большинстов гальванических линий содержат стадию «обезжиривания», которая, на самом деле, отвечает за удаление не столько жира, сколько масла с поверхности деталей. Масло не расщепляется щелочью (поскольку это не сложные эфиры глицерина, как жиры, подверженные гидролизу в щелочной среде, а смесь заметно более инертных углеводородов), а переводится с поверхности деталей в объем объем «обезжиривающего» растовора в виде эммульсии с помощью ПАВ. Этот сток, соответственно, содержит много масла в виде эммульсии. В осветлителе масло эффективно не задерживается и может загрязнать рабочие элементы оборудования следующих стадий, приводя к их сбоям, останову, выходу из строя. При флотации же интенсифицируется процесс всплытия масла и удаление осадка и масел производится из всплывшей флотопены.
  2. 2. Флотация имеет меньшую тенденцию к просококу коллоидной взвеси осадка и загрязнению им последующих стадий и эффлюэнта стока в силу иного физического принципа удаления осадка, способствующего удалению в первую очередь как раз более легких частиц.
  3. Недостатком флотационных установок является большая стоимость в сравнении с осветлением, поэтому при реконструкции существующих систем стоит оценивать размер существующих проблем, которые предполагается решить заменой технологии в данной конкретной системе и стоимость альтернативных решений.

К содержанию...

Фильтрация стока после осаждения: альтернативы

Очистка гальваностоков. Ультрафильтрация.

После осаждения тяжелых металлов, сток на выходе осветлителя или флотатора традиционно фильтруют, чтобы задержать оставшиеся во взвешенном сосотоянии частички осадка. Традиционно для этого используют недорогие песчанные фильтры. Однако это не самый эффективный и недежный способ фильтрации из предлагаемых современными технологиями. Песчанные фильтры не являются непроницаемым барьером для коллоидных частиц: загрузка фильтра задерживает опредленный процент коллоидов по адгезионному механизму, но эффективность процесса не равна 100% и тем ниже, чем выше скорость фильтрации. Снижение же скорости фильтрации ведет к увеличению размера фильтра, его стоимости, площади под установку, объема воды на собственные нужды, скорости промывки (требования к насосам) и т.д.: в реальных системах, выбор размера песчанного фильтра всега компромисс между качеством фильтрации и приемлемостью экономических, гидравлических, и прочих параметров фильтра. При этом, в отсутствие должного усреднения стока (часто встречающаяся проблема), а так же периодического или регулярного повыщения нагрузки на линию чистки стока, стадия осаждение начинает давать сбои, осадок не успевает сформироваться и осесть в должной степени, начинаются проскоки коллоидов, частиц осадка, а, иногда, и нескоагулировавших регентов на фильтры. Песчанный фильтр частично улавливает эти выбросы, но сам при этом начинает работать хуже: больше коллоидов на выходе, периодические проскоки осадка, более частые промывки (повышения потребления собственных нужд), «забивание» распредсистем и, как следствие, частые остановы и сервисные работы с разборкой и чисткой распределителей фильтров. При этом количество остаточного коллоида на выходе фильтров все равно увеличивается, что приводит к сбоям установок обратного осмоса и/или превышению ПДК по тяжелым металлам в стоке на сброс. Одним из решений проблемы является замена песчанных фильтров ультрафильтрацией — лучший вариант очистки от коллоидов. Ультрафильтрация позволяет полностью предотвратить вынос осадка из камеры осаждения, даже в случае сбоя в работе осветлителя/флотатора. Ультрафильтрация производит глубокую и стабильную очистку от коллоида вне зависмости от колебаний скорости потока, т.е., в том числе предотвратить вынос осажденных тяжелых металлов в сток. Стабильно низкий коллоидный индекс растовра после ультрафильтрации делает данную технологию идеальной предподготовкой для мембран обратного осмоса, обеспечвающий высокую стабильность работы обратного осмоса и длительный срок службы элементов (именно поэтому подавляющее большинстве крупных современных заводов обратного осмоса, промышленных и опреснительных, оснащены ультрафильтрацией: число осмотических мембранных элментов на них исчисляется сотнями и тысячами, и периодичность замены и минимизация сервисных работ (моек) очень сильно сказываются на стоимости эксплуатации и жизненного цикла завода). Если линия очистки стока включает обратный осмос или нанофильтрацию, ультрафильтрация практически незаменима для обеспечения стабильной и эффективной работы всей линии в целом.

Для сточных вод до недавнего времени ультрафильтрация имела ограниченную применимость в связи с проблемами полимерных ультрафильтрационных мембран (ограниченная хим стойкость, быстрая необратимая деградация, чувствительность к ряду загрязнений), а керамические элементы обладали высокой удельной стоимостью и решали не все проблемы хим.стойкости. Однако современные керамические мембраны не только преодолели проблемы хим стойккости, но и стали экономически привлекательной альтернатиовй полимерным решениям (в том числе за счет более простой конструкции систем и их эксплуатации). На данный момент специальная керамическая ультрафильтрация — лучший способ гарантировать стабильно высокое качество очистки стока, как в новых, так и в реконструируемых системах.

К содержанию...

Очистка осветленного стока от «хвостов» тяжелых металлов

Очистка гальваностоков. Известкование.

Традиционным способом очистки гальванических стокоов от солей тяжелых металлов является осаждение тяжелых металлов в процессе коагуляции. При этом часто остаточные концентрации тяжелых металлов на выходе осаждения превышают ПДК. Существует несколько способов решения данной проблемы.

  1. Анализ параметров работы и конструкции самой системы нейтрализации и осажденния, донастройка водно-химического режима и/или конструктивные доработки.
  2. Анализ качества усреднения перед осаждением (особенно, если превышения ПДК носят периодический характер).
  3. Применение дополнительных специализированных реагентов/сорбентов в процессе осаждения (особенно если превышение идет по одному-двум конкретным ионам).
  4. Анализ работы и исполнения системы фильтрации после осаждения: превышения ПДК может быть вызвано выносом/проскоком мелкодисперсного осадка через систему фильтрации.
  5. Улавливание ионов тяжелых металлов на выходе системы фильтрации.
  6. Далее мы обсудим именно пятый способ. Это может быть сделано 2-мя технологиями: мембранной и/или ионобменной (регенерируемые фильтры). И та и другая технология позволяют имеют свои сильные и слабые стороны, в некоторых случаях оптимальным вариантом является та или иная комбинация обеих. Поэтому выбор должен быть основан на анализе конкретной ситуации на объекте: объем стоков, их состав, состав оборудования выше по тех.цепочке и существующие в ней проблемы. Мембранная технология позволяет уловить ионы тяжелых металлов в небольшом объеме стока, сконцентрировать их и вернуть концентрат на вход стадии осаждения. Ионный же обмен улавливает в объеме загрузки все поливалентные ионы и потом смыть их с загрузки небольшим объемом расворов, тем самым также сконцентрировав тяжелые металлы (вместе с солями жесткости, если таковые присутсвовали в исходном растоворе. Дальше этот растовр может обрабатываться или вывозиться в завимости от объемов, остальной части технологии и т.п. Оба способа эффективны: выбор того или иного решения, его встраивания в общую технологическую цепочку не может быть произведен без анализа «контекста», увязывания работы этой стадии с работой других элементов системы.

К содержанию...

Возврат ценных солей из стоков в технологический процесс: «закрытие» тех.процесса по солям тяжелых металлов

Установка удаления осадка

В нанесении гальванических покрытий используются дорогостоящие цветные металлы: хром, олово, никель, свинец, медь. При промывке изделий и замене растворов гальванических ванн часть солей этих металлов оказывается в стоках. Это двойная проблема: во-первых, потеря дорогостоящего материала, во-вторых, содержание солей таких металлов в сточных водах жестко регламентировано, следовательно, необходимо устанавливать станции очистки стоков. В ряде случаев вместо станции очистки стока можно установить систему извлечения из стока солей тяжелых металлов и их концентрирования с целью возврата в технологический процесс. Выгода двойная: снижение закупок дорогостоящих реагентов и снижение токсичности стока. Извлечь соли тяжелых металлов из растовора можно несколькоми способами, самыми удобными являются нанофильтрация и ионный обмен на правильно подобранных ионитах. Нанофильтрация позволяет отделить поливалентные ионы от моновалентных и сконцентрировать первые. На выходе процесса получается электролит с содержанием процессных солей, который можно долить в ванну, и потребность в добавлении сухих солей снижается, т.к. электролит уже содержит необходимые соли. Смесь анионов может ограничить применимость данного метода. В частности при нейтрализации серной кислотой гальваносток содержит много сульфат-ионов — двухзарядный анион будет также задерживаться мембраной при нанофильтрации (с натрием в качестве противоиона, например) и если предполагается последующая рециркуляция стока через осветлитель то будет возникать эффект концентрирования сульфатов, который необходимо принимать в расчет. Ионный обмен, с точки зрения доочистки стока, дает схожий результат, но в периодическом режиме: сначала идет накопление ионов на загрузке, а затем их смыв. Анионный состав раствора играет меньшую роль, по сравнению с нанофильтрацией, т.к. концентрирование анионов не происходит. В некоторых случаях целесообразно также использовать технологию селективного осаждения: этот метод, как правило, более капризен и трудоемок, чем первые два, но может дать в ряде случаев очень хороший экономический эффект. Даже из краткой информации приведенной выше видно, что выбор технологии и конфигурации системы рекуперации солей тяжелых металлов следует выбирать под конкретные условия и процессы каждого производства. Однако такие системы могут быть существенно более выгодны и эффективны, экономически и экологически , чем системы стандартные решения очистки промывных стоков и стоков замены раствора рабочих ванн » в лоб», т.к. могут замкнуть производственный цикл не только по воде, но и по самому дорогостоящему и, одновременно, токсичному сырью: солям тяжелых металлов.

К содержанию...

Очистка отработанных кислот и щелочей для возврата в технологический процесс: минимизация нейтрализации стока

Установка очистки серной кислоты.

Большинство гальванических производств направляют отработанные растворы в усреднитель стока для последующей нейтрализации, концентрирования, упаривания, или вывоза. Обработка и концентрирование стоков — дорогостоящий процесс. Наша компания предлагает альтернативное, экономически и экологически эффективное решение проблемы, основанное на современных мембранных технологиях. Основная часть засоленного стока гальванических производств образуется при нейтрализации отработанных кислот и/или щелочей. Современные мембранные технологии позволяют произвести очистку отработанных кислот и щелочей, и сделать их пригодными для повторного использования в тех.процессах. Экономические выгоды такого решения:

  1. В разы сокращается количество стоков, следовательно, существенно снижаются издержки на приобретение и эксплуатацию линии обработки стоков.
  2. В разы сокращается потребление реагентов: как за счет повторного использования в основных технологических процессах, так и за счет меньшего объема нейтрализации и обработки стока.
  3. Кратное сокращение потребления электроэнергии (при использовании выпарных установок), или издержек на утилизацию отходов

Все это вместе приводит к снижению себестоимости продукции при строгом соответствии производства требованиям экологического законодательства. В ряде случаев количество стоков может сократиться на столько существенно (особенно в случае качественного концентрирования остаточного объема стоков), что самые дорогостоящие (в закупке и в эксплуатации) системы линии обработки стока — выпарные установки — могут быть полностью исключены.

К содержанию...

Обратный осмос: причины нестабильной работы

Очистка гальваностоков. Обратный осмос.

Обратный осомос — давно известная, хорошо отработанная, эффективная технология деминерализации воды/концентрирования солей. Тем не менее, в гальванической индустрии нередки жалобы инженерных служб на нестабильную работу данных систем. Причина проста: обратный осмос, как и всякая технология, имеет свои сильные и слабые места, диапазон применимости, определенные требования и ограничения по качеству исходной воды. Поэтому стабильная и экономичная работа обратного осмоса зависит от качества проектирования всей системы обработки стока в целом, корректного применения данной технологии и качества ее реализации. Основные причины сбоев в работе, малых степеней конверсии и низкого качества фильтрата, частых химических моек, малых сроков службы мембранных элементов делятся на 2 группы: 1. Проблема не в самом обратном осмосе, а выше по технологической цепочке, на более ранних этапах обработки стока. Например, типичный сценарий: некачественное усреднение, сильные колебания состава стока на входе на стадию осаждения, как следствие, плохая работа осаждения, проскок взвешенных, тяжелых металлов, неосажденного коагулянта на вход фильтрации, проскок через нее (если это обычное «экономичное» решение — песчанные фильтры вместо более современной ультрафильтрации) — осаждение коагулянта, тяжелых металлов, коллоидов на поверхности мембран — снижение производительности, рост рабочего давления, срабатывание аварийных датчиков и останов, внеплановая хим.мойка. Или (если осмос был дешевый, датчиков и автоматики не было), рост перепада давления на мембранных элементах, их телескопирование и выход из строя. В такой ситуации первый логичный «порыв» — «свалить вину» на обратный осмос: именно он вышел из строя. Но если проанализировать изначальные причины, сбоя, то как видно в приведенном выше примере, обратный осмос не имеет к ним отношения. И ситация может быть исправлена и сбои предотвращены достаточно просто и недорого — доработкой системы усреднения. (подробнее про усреднени см. выше) 2. Обратный осмос давно и хорошо известная, широко распространенная технология. Поэтому многие компании без серьезной инженерной подготовки, производят установки: все «просто» насос, мембраны и трубы. Эта «простота» кажущаяся. Для того, чтобы установка обратного осмоса работала качественно и надежно она должна быть грамотно спроектирована и качественно исполнена (выбор материалов, элементная база, комплектация КИП, автоматика и т.п.). Пока речь идет о простых применениях, например доочистка питьевой воды, где и исходная воды достаточно чистая, и требования к очищенной воде невысоки — технология «прощает» ошибки. В случаях же сточных вод, где исходный водный раствор «тяжел», или применений с высокими требованиями к качеству воды на выходе, и/или производительности, и/или сроку службы мембран велики (например, энергетика, микроэлетроника, опреснение), конструкция и исполнение установки обратного осмоса, ее адаптация под конкретную задачу — становятся важными факторами успешного применния технологии. Ниши специалисты обладают более чем 20-ти летним опытом работы с обратноосмотической технологией: вы можете проконсультироваться по вашим задачам/проблемам с нашими технологами и инженерами (+ 7 495 15 00 483 , inbox@tis-m.ru).

К содержанию...

Технологии «нулевого» сброса для гальванических производств. Глубокое концентрирование гальванических стоков после нейтрализации

Очистка гальваностоков. Электродиализ.

Нейтрализованные стоки гальванических производств содержат большое количество солей. Сброс такого стока в канализацию, на рельеф, или в рыбо-хозяйственные водоемы запрещен. Упаривание, или вывоз на специальные полигоны всего объема таких стоков очень дорог. Поэтому многие предприятия засоленный сток предварительно концентрируют. Традиционно применяемые для этого баромембранные установки (обратного осмоса) ограниченно эффективны:

  1. Позволяют сократить объем стока в несколько раз;
  2. Получить солевой концентрат 20-40 г/кг.

Предлагаемые нашей компанией для решения этой задачи передовые комбинированные мембранные установки, сочетающие баро-мембранные, и электро-мембранные процессы позволяют:

  1. Сократить объем стока 20-50 раз.
  2. Получить солевой концентрат 80-150 г/кг.

Выгоды применения комбинированной технологии:

  1. Сокращает затраты на упаривание, или вывоз стока в несколько раз по сравнению с традиционными баромембранными системами.
  2. Работает на низких давлениях

Такие комбинированные решения позволяют во многих случаях либо полностью исключить термические стадии (упаривание и кристаллизацию), либо уменьшить мощность и стоимость этих систем в несколько раз и гарантировать их стабильную работу (вследствие однородности солевого состава на входе).

К содержанию...

Целесообразность применения деминерализованной или умягченной воды при промывке изделий

Гальваника. Сточные воды. Промывка

При использовании устревших способов работы с гальваническим стоком: в отсутсвие глубокой очистки, концентрирования, рекуперации. Вопрос качества воды в промывных ваннах определлся сугубо требованиями основной технологии. Но при концентрировании, рекуперации, рециркуляции стока в нем концентрируются не только основные компоненты растова, но также и соли поступившие с промывочной водой. Некоторые из этих солей могут представлять большую проблему: например, присутствие солей жескости может существенно ограничить возможную степень концентрирования и спектр применимых методов. В то же время умягчение или деминерализация исходной воды перед подачей в промывные ванны, как правило, никаких трудностей не представляет. То же касается реагентов, применяемых при нейтрализации: на многих предприятиях применяется серная кислота только потому, что она дешевле в закупке. А последствия с точки зрения технологий обработки стока, возникающие ограничения, проблемы и стоимость их решения для предприятия не оцениваются. В большинстве случаев, при рачительном подходе к расходованию реагентов и учете последствий по всей технологической цепочке, более дорогие кислоты оказываются предприятию более выгодны экономически и по капитальным и по эксплуатационным затратам.

К содержанию...

Чем занимается наша организация применительно к гальваностокам

Наши специалисты готовы проанализировать возможные современные схемы обращения с гальваностоком на Вашем производстве, выполнить расчет системы и экономического эффекта от ее внедрения, возможность и целесообразность создания замкнутой или полузамкнутой системы, предложить различные варианты реконструкции существующих или создания новых очистных сооружений гальваничекого стока, обеспечивающих современные стандарты экологичности и реурсоэффективности производства. Если Вы хотите проконсультироваться относительно принципиальных возможностей Вашего производства по рекуперации рабочих электролитов, закрытия производственного цикла по солям цветных металлов, сокращения/устранения жидкого сброса и т.п. — свяжитесь с нашими специалистами: это бесплатно.+7 495 15 00 483inbox@tis-m.ru

К содержанию...

Напишите нам

Отправьте нам запрос или задайте Ваш вопрос

+7 (495) 15 00 483 | inbox@tis-m.ru

Карта сайта

Логотип компании ТехноИнжСтрой, тип 2

OOO "ТехноИнжСтрой" © 2014-2022